1. What is the law of conservation of	No atoms are lost or made during a
matter?	chemical reaction so
	Mass of reactants = Mass of products
2. How do you calculate the relative	Add together the relative atomic masses A _r
formula mass M_r of a compound?	of the elements in the compound.
3. If the following reaction was carried out	The mass would increase.
in a non-enclosed system what would	Gaseous oxygen is added to produce a solid
happen to the mass and why?	product.
$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$	P
4. If the following reaction was carried out	The mass would decrease.
in a non-enclosed system what would	A gaseous product is produced which can
happen to the mass and why?	escape.
$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$	
5. What is a mole	The relative formula mass M _r of a
	compound or the relative atomic mass A _r of
	an element in grams.
6. How many atoms are in 1 mole of an	6.02 x 10 ²³ Avagadro's constant
element?	J
7. How many molecules are in 1 mole of a	6.02 x 10 ²³ Avagadro's constant
compound?	
8. What is the equation triangle for	
calculating moles from a mass or a mass	
from the number of moles?	Mass
	Relative
	 Relative Moles × formula
	Relative Moles × formula mass
9. What steps do we use to calculate the	Moles × formula mass 1) Convert the known reactant or products
9. What steps do we use to calculate the unknown mass of a reactant used or a	Moles × Relative formula mass 1) Convert the known reactant or products mass into moles.
9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known	Moles × Relative formula mass 1) Convert the known reactant or products mass into moles. 2) Use the balanced equation to tell you
9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product?	Moles × Relative formula mass 1) Convert the known reactant or products mass into moles. 2) Use the balanced equation to tell you how many moles of the unknown reactant
9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product?	Moles × Relative formula mass 1) Convert the known reactant or products mass into moles. 2) Use the balanced equation to tell you how many moles of the unknown reactant or product their should be.
9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product?	Moles × Relative formula mass 1) Convert the known reactant or products mass into moles. 1) Use the balanced equation to tell you how many moles of the unknown reactant or product their should be. 3) Convert these moles to a mass.
 9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product? 10. What is a limiting reactant? 	Moles×Relative formula mass1) Convert the known reactant or products mass into moles.1) Convert the known reactant or products mass into moles.2) Use the balanced equation to tell you how many moles of the unknown reactant or product their should be. 3) Convert these moles to a mass.3) Convert these moles to a mass.The reactant that is completely used up.
 9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product? 10. What is a limiting reactant? 	Moles×Relative formula mass1) Convert the known reactant or products mass into moles.1)2) Use the balanced equation to tell you how many moles of the unknown reactant or product their should be.3) Convert these moles to a mass.The reactant that is completely used up. Once used up the reactant stops.
 9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product? 10. What is a limiting reactant? 11. How do you calculate the concentration 	Moles×Relative formula mass1) Convert the known reactant or products mass into moles.1)2) Use the balanced equation to tell you how many moles of the unknown reactant or product their should be.3) Convert these moles to a mass.The reactant that is completely used up. Once used up the reactant stops.Concentration =amount of solute (g)
 9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product? 10. What is a limiting reactant? 11. How do you calculate the concentration (g/dm³) of a solution? 	Moles×Relative formula mass1) Convert the known reactant or products mass into moles.1) Convert the known reactant or products mass into moles.2) Use the balanced equation to tell you how many moles of the unknown reactant or product their should be.1) Convert these moles to a mass.3) Convert these moles to a mass.1) Conce used up the reactant stops.Concentration =amount of solute (g)
 9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product? 10. What is a limiting reactant? 11. How do you calculate the concentration (g/dm³) of a solution? 12. How can you increase the concentration 	Moles×Relative formula mass1) Convert the known reactant or products mass into moles.1)2) Use the balanced equation to tell you how many moles of the unknown reactant or product their should be.3) Convert these moles to a mass.The reactant that is completely used up. Once used up the reactant stops.Concentration =amount of solute (g) volume of solution (dm³)1) Dissolve more solute in the same volume
 9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product? 10. What is a limiting reactant? 11. How do you calculate the concentration (g/dm³) of a solution? 12. How can you increase the concentration of a solution? 	Moles×Relative formula mass1) Convert the known reactant or products mass into moles.1) Convert the known reactant or products mass into moles.2) Use the balanced equation to tell you how many moles of the unknown reactant or product their should be.1) Convert these moles to a mass.3) Convert these moles to a mass.1) The reactant that is completely used up. Once used up the reactant stops.Concentration =amount of solute (g) volume of solution (dm³)1) Dissolve more solute in the same volume of solution.
 9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product? 10. What is a limiting reactant? 11. How do you calculate the concentration (g/dm³) of a solution? 12. How can you increase the concentration of a solution? 	Moles×Relative formula mass1) Convert the known reactant or products mass into moles.1)2) Use the balanced equation to tell you how many moles of the unknown reactant or product their should be.3) Convert these moles to a mass.The reactant that is completely used up. Once used up the reactant stops.Concentration =amount of solute (g) volume of solution (dm³)1) Dissolve more solute in the same volume of solution.2) Evaporate off some of the solution.
 9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product? 10. What is a limiting reactant? 11. How do you calculate the concentration (g/dm³) of a solution? 12. How can you increase the concentration of a solution? 13. How do you calculate the 	Moles×Relative formula mass1) Convert the known reactant or products mass into moles.1) Convert the known reactant or products mass into moles.2) Use the balanced equation to tell you how many moles of the unknown reactant or product their should be.3) Convert these moles to a mass.3) Convert these moles to a mass.3) Convert these moles to a mass.The reactant that is completely used up. Once used up the reactant stops.Concentration =amount of solute (g) volume of solution (dm³)1) Dissolve more solute in the same volume of solution.2) Evaporate off some of the solution.1) Calculate the mass in grams in
 9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product? 10. What is a limiting reactant? 11. How do you calculate the concentration (g/dm³) of a solution? 12. How can you increase the concentration of a solution? 13. How do you calculate the concentration in mol/dm³ of a solution 	Moles×Relative formula mass1) Convert the known reactant or products mass into moles.1) Convert the known reactant or products mass into moles.2) Use the balanced equation to tell you how many moles of the unknown reactant or product their should be.1) Convert these moles to a mass.3) Convert these moles to a mass.The reactant that is completely used up. Once used up the reactant stops.Concentration =amount of solute (g) volume of solution (dm³)1) Dissolve more solute in the same volume of solution.1) Calculate the mass in grams in 1cm³ of solution.
 9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product? 10. What is a limiting reactant? 11. How do you calculate the concentration (g/dm³) of a solution? 12. How can you increase the concentration of a solution? 13. How do you calculate the concentration given the mass of solute in a certain 	Moles×Relative formula mass1) Convert the known reactant or products mass into moles.1) Convert the known reactant or products mass into moles.2) Use the balanced equation to tell you how many moles of the unknown reactant or product their should be.3) Convert these moles to a mass.3) Convert these moles to a mass.3) Convert these moles to a mass.The reactant that is completely used up. Once used up the reactant stops.Concentration =amount of solute (g) volume of solution (dm³)1) Dissolve more solute in the same volume of solution.2) Evaporate off some of the solution.1) Calculate the mass in grams in 1cm³ of solution.2) Calculate the mass in 1000cm³ of
 9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product? 10. What is a limiting reactant? 11. How do you calculate the concentration (g/dm³) of a solution? 12. How can you increase the concentration of a solution? 13. How do you calculate the concentration given the mass of solute in a certain volume? 	Moles×Relative formula mass1) Convert the known reactant or products mass into moles.1) Convert the known reactant or product the solut their should be.2) Use the balanced equation to tell you how many moles of the unknown reactant or product their should be.3) Convert these moles to a mass.3) Convert these moles to a mass.The reactant that is completely used up. Once used up the reactant stops.Concentration =amount of solute (g) volume of solution (dm³)1) Dissolve more solute in the same volume of solution.1) Calculate the mass in grams in 1cm³ of solution.2) Calculate the mass in 1000cm³ of solution.2) Calculate the mass in 1000cm³ of solution.
 9. What steps do we use to calculate the unknown mass of a reactant used or a product made in a reaction given a known mass of another reactant or product? 10. What is a limiting reactant? 11. How do you calculate the concentration (g/dm³) of a solution? 12. How can you increase the concentration of a solution? 13. How do you calculate the concentration given the mass of solute in a certain volume? 	Moles×Relative formula mass1) Convert the known reactant or products mass into moles.1) Convert the known reactant or products mass into moles.2) Use the balanced equation to tell you how many moles of the unknown reactant or product their should be.3) Convert these moles to a mass.3) Convert these moles to a mass.The reactant that is completely used up. Once used up the reactant stops.Concentration =amount of solute (g) volume of solution (dm³)1) Dissolve more solute in the same volume of solution.1) Calculate the mass in grams in 1cm³ of solution.2) Evaporate off some of the solution.2) Calculate the mass in 1000cm³ of solution.3) Convert the mass to moles3) Convert the mass to moles

14. How do you carry out a titration to	1) Measure 25cm3 of alkali using a
find out an unknown concentration?	pipette into a conical flask.
(this example will use acid as known	2) Add a few drops of indicator
and alkali as unknown)	(phenolphthalein is pink)
	3) Slowly add the acid from a
	burette swirling as you do
	A) When the indicator changes
	4) When the malcator changes
	(pnenoiphthalein goes
	colourless) stop adding the acid
	and record the volume used.
	5) Repeat until concordant results
	are obtained.
15. How do use the results of a titration	1) Work out how many moles of the
to find out an unknown concentration?	acid (known concentration) were
(this example will use acid as known	used.
and alkali as known)	2) Using the balanced equation
	work out how many moles of the
	alkali this reacted with (a simple
	ratio)
	3) This number of moles was in a
	aiven volume so use this to
	given volume, so use this to
	concontration)
16 What volume does 1 male of a arc	$\frac{1}{24}$
10. What volume does 1 mole of a gas	240m² - 24000cm²
occupy at rtp (20 C and 1atms	
pressure)?	
17 What is the equation trianale for	
calculating moles of a gas from a	
volumo or vica vorca?	
volume of visa versa?	Volume
	of gas (dm ³)
	moles
	of gas 24
10 How do you calculate % wold?	
10. HOW UU YOU CAICUIALE % YIEIA?	// yielu = <u></u>
	made x100
	Max theoretical mass of
	product
19. Why is % yield never 100%	1) reaction may not go to completion as
	it is reversible.

	 2) Some of the product may be lost when it is separated from the reaction mixture. 3) We may get unexpected reactions.
20. What is atom economy?	A measure of the amount of starting material that end up a useful product.
21. How can be calculate atom economy?	Relative formula mass of desiredproductx 100Sum of relative formula masses of allreactants
22. Why is a high atom economy preferable?	 1) Less raw materials are wasted. 2) Less energy wasted 3) Less waste produced 4) More economical