

Numeracy at MSJ

Supporting numeracy across the curriculum

Introduction

What is the purpose of this booklet?

This booklet has been produced to give guidance to pupils and parents on how certain common Numeracy topics are taught during maths lessons at Mount St Joseph. Staff from all departments have access to a copy of the booklet. It is hoped that using a consistent approach across all subjects will make it easier for pupils to progress.

How can it be used?

Read through the booklet one section at a time and then try the questions that are set at the end of most sections, checking your answers with those given at the end of the booklet. You can also talk to your child as you go through, asking them questions about the various topics. For example, asking them to describe a parallelogram, or what a negative number multiplied by another negative number gives.

If you are helping your child with their homework, you can refer to the booklet to see what methods are being taught in school. Simply look up the relevant page for a step by step guide and useful examples.

This booklet includes skills not only useful in their maths lessons, but also in other subjects across the curriculum and in general outside of school.

For help with maths topics not found in this booklet, pupils should refer to their class work or ask their teacher for help.

Why is their more than one method shown?

In some cases the method used will be dependent on the level of difficulty of the question, whether or not a calculator is permitted or simply which method the pupil themselves prefers.

Table of Contents

Topic

1. Mental Methods $(+-x) \quad 4$
2. Written Methods $(+-x \div) \quad 7$
3. Number Properties 11
4. Place Value 13
5. Fractions 14
6. Percentages 18
7. Fraction, Decimal \& Percentage Equivalence 21
8. Ratio \& Proportion 22
9. Negative Numbers 25
10. Coordinates 27
11. Inequalities 28
12. Names of Two Dimensional Shapes 29
13. 3D Shapes 30
14. Perimeter 31
15. Area of 2D Shapes 32
16. Volume 34
17. Units of Measurement 35
18. Time 37
19. Bearings 39
20. Displaying Data 40
21. Averages \& Spread 46

Mathematical Dictionary 47
Answers 49
Ideas for help at home 52

1. Mental methods $(+-x \div)$

Addition

Example $54+27$

Method 1 - Add the tens, then the units, then add together

$$
50+20=70 \quad 4+7=11 \quad 70+11=81
$$

Method 2 - Split the number to be added into tens and units and add separately.

$$
54+20=74 \quad 74+7=81
$$

Method 3 - Round up to the next 10, then subtract.
$54+30=84$ but 30 is 3 too many therefore subtract 3 $84-3=81$

Subtraction

Example 93-56

Method 1 - Count on

Count on from 56 until you reach 93.
This can be done in several ways e.g.

Method 2 - Break up the number being subtracted

e.g. subtract 50 then subtract 6 .

$$
\begin{gathered}
93-50=43 \\
43-6=37
\end{gathered}
$$

Multiplication

It is essential that pupils know all of the times tables from 1×1 up to 10×10. These are shown below:

\times	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

Example 39×6
Method 1 - Multiply by the tens then by the units

Method 2 - Multiply 40×6 then subtract 1×6

For you to try

1) $56+23$
2) $69+16$
3) $436+78$
4) $45-24$
5) $84-68$
6) $537-84$
7) 23×6
8) 59×8
9) 7×68

2. Written methods (+-x \div)

Addition

Example $534+2678$

Place the digits in the correct "place value" columns with the numbers under each other. Begin adding in the units column.

Subtraction

Example: 7689-749

Place the digits in the correct "place value" columns with the numbers under each other. Begin subtracting in the units column.

You can't subtract 9 from 6 so move 1 ten from the 8 tens to the 6 units to make 16 units.

Th	H	T	U
${ }^{67}$	${ }^{1} 6$	78	${ }^{1} 6$
-	7	4	9
6	9	3	7

Note that the same has happened with the hundreds.

For you to try

1) $556+69$
2) $678+37$
3) $856+376$
4) $8072+548$
5) $7604+269$
6) $4576+643$
7) 556-48
8) $856-673$
9) $1234-769$
10) $4530-667$
11) $2378-1605$
12) $7931-3347$

Addition of decimals

Example 53.4 + 26.78

Place the digits in the correct "place value" columns with the numbers under each other. Make sure the decimal points are lined up vertically.
Begin adding in the furthest column on the right.

T	U	.	$1 / 10$	$1 / 100$
	1			
5	3	.	4	
2	6	.	7	8
7	9	.	1	8

Subtraction of decimals

Example: 78.9-7.49
Place the digits in the correct "place value" columns with the numbers under each other.

Make sure the decimal points are lined up vertically.
Begin subtracting in the furthest column on the right.

Fill in any gaps with zeros.

T	U	.	$1 / 10$	$1 / 100$
7	8	.	89	${ }^{1} 0$
-7	.	4	9	
7	1	.	4	1

For you to try

1) $69.7+36.8$
2) $55.7+6.38$
3) $5.96+68.4$
4) $78.76+6.5$
5) $43.7+643.2$
6) $7.67+673.9$
7) $34.8-15.2$
8) $67.9-6.45$
9) $543.8-74.38$
10) $56.23-16.9$
11) $234.1-62.4$
12) $328-81.3$

Multiplication

Geography, multipliers of 6 - fertility rate of 6 showing how quickly the popn will increase

Method 1 - Grid Method

Example 56×34

Separate the 56 and 34 into tens and units.

Multiply the columns with the rows and place the answers in the grey boxes.

x	50	6
30	1500	180
4	200	24

Add the numbers: $1500+180+200+24$

$$
=1904
$$

Method 2 - Napier's Bones

Example 847×6

Write 847 across the top and 6 down the side.
Multiply each of the digits $8,4 \& 7$ by the 6 , putting the answers in the orange boxes. The answer is obtained by adding up from right to left.

For you to try

1) 36×62
2) 82×47
3) 156×5
4) 263×7
5) 556×62
6) 452×81

Division

Example: $980 \div 4$
Concise method

> There are 2 fours in 9 with remainder 1 so the answer starts with 2 and the remainder 1 is placed next to the 8 .

There are 4 fours in 18 with remainder 2.
There are 5 fours in 20 with no remainder.
The answer is 245

Chunking method

We use multiples of $100,10,5,2$ and 1 as these are easy to work out.

X	4	Total	
100	400	400	$100 \times 4=400$ which is a great deal less than 980.
100	400	800	Another 100×4 will make a total of 800.
10	40	840	Another 100×4 will give a total of 1200 which is more than 980 so we use $10 \times 4=40$ giving a total of 840.
10	40	880	
10	40	920	$10 \times 4=40$ another 3 times gives a total of 960.
10	40	960	
5	20	980	$5 \times 4=20$ giving a total of 980 which is what we need.

By adding the " x " column we can see how many $4 s$ there are in 980.

For you to try

1) $558 \div 3$
2) $624 \div 4$
3) $266 \div 7$
4) $1554 \div 6$
5) $7535 \div 5$
6) $4203 \div 9$

3. Number Properties

Even numbers

$2,4,6,8,10,12, \ldots$, etc.
Even numbers are the same as the numbers in the two times table.

A number is even if it ends in a $2,4,6,8$ or 0
e.g. 5678 is even as it ends in an 8.

Odd numbers

$1,3,5,7,11,13, \ldots$, etc.

Odd numbers are all the numbers that aren't in the two times table.

A number is odd if it ends in a $1,3,5,7$ or 9
e.g. 673 is odd as it ends in a 3.

Square numbers

$1^{2}=1 \times 1=1$
$2^{2}=2 \times 2=4$
$3^{2}=3 \times 3=9$
$4^{2}=4 \times 4=16$
$5^{2}=5 \times 5=25$

The first ten square numbers are:
$1,4,9,16,25,36,49,64,81,100$

For you to try

From the following list which are
a) odd
b) even
c) square numbers?

$$
7,11,18,25,30,36,100,285,3498
$$

Multiples

A multiple of a number is that number multiplied by any whole number.

> e.g. $\quad 14$ is a multiple of 7 because $7 \times 2=14$ 6 is a factor of 2 because $2 \times 3=6$.

The multiples of a number start with that number and can be thought of as the times table of that number.
e.g. The multiples of 5 are: $5,10,15,20,25, \ldots$, etc.

Note: Multiples of a number go on forever!

Factors

A factor is a number that divides exactly into another number.
e.g. 4 is a factor of 12 because 3 lots of 4 make 12 .

6 is a factor of 12 because 2 lots of 6 make 12 .

All the factors of 12 are: $1,2,3,4,6$ and 12

Prime numbers

A prime number has exactly two factors, 1 and itself.
e.g. The only factors of 17 are 1 and 17 . So 17 is a prime number.

The prime numbers between 1 and 20 are:
$2,3,5,7,11,13,17,19$

Note: 1 is not a prime number because it only has one factor!

For you to try

From the following list, which are
a) multiples of 6
b) factors of 30
c) prime?

$$
3,5,9,12,15,19,24,30
$$

4. Place Value

10 units	$=1$ ten
10 tens	$=1$ hundred
10 hundreds	$=1$ thousand

10 thousandths	$=1$ hundredth
10 hundredths	$=1$ tenth
10 tenths	$=1$ unit

Geography - 4.6 billion years - they have no concept of how big this number is!
The placement of the digits within the number gives us the value of that digit.
egg.

The digit 4 has the value of 4 thousand (4000)

The digit 8 has the value 8 tens (80)

The digit 7 has the value
7 thousandths ($7 / 1000$ or 0.007)

For you to try

What is the value of the 7 in each of the following numbers?

1) 756
2) 2578
3) 47489
4) 4.75
5) 2.07
6) 37488234

5. Fractions

Understanding Fractions

The numerator is the number on the top of the fraction

Example

A necklace is made from black and white beads.

What fraction of the beads are black?

There are 3 black beads out of a total of 7 , so $\frac{3}{7}$ of the beads are black.

Equivalent fractions

All the fractions below represent the same proportion. Therefore they are called equivalent fractions.

$1 / 2$

$2 / 4$

4/8

Below are three rows of equivalent fractions. What do you think would come next?

$$
\begin{aligned}
& \frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\frac{4}{8}=\frac{5}{10}= \\
& \frac{1}{3}=\frac{2}{6}=\frac{3}{9}=\frac{4}{12}=\frac{5}{15}= \\
& \frac{3}{4}=\frac{6}{8}=\frac{9}{12}=\frac{12}{16}=\frac{15}{20}=
\end{aligned}
$$

You can tell if two fractions are equivalent if the numerator and denominator have both been multiplied by the same amount.

Example

What fraction of the flag is shaded?

6 out of 12 squares are shaded. So $\frac{6}{12}$ of the flag is shaded.
It could also be said that $\frac{1}{2}$ the flag is shaded.
$\times 6$
$\frac{6}{12}$ and $\frac{1}{2}$ are equivalent fractions because $1 \times 6=6$ and $2 \times 6=12$

Simplifying Fractions

To simplify a fraction you divide the numerator and denominator by the same number.

Example
(a)

(b)

This can be done repeatedly until the numerator and denominator are the smallest possible numbers - the fraction is then said to be in its simplest form.

Example

Simplify $\frac{72}{84}$

$$
\frac{72}{84}=\frac{36}{42}=\frac{18}{21}=\frac{6}{7} \text { (simplest form) }
$$

Fractions of Quantities

To find the fraction of a quantity, divide by the denominator.

To find $\frac{1}{2}$ divide by 2 , to find $\frac{1}{3}$ divide by 3 , to find $\frac{1}{7}$ divide by 7 etc.

Example 1

Find $\frac{1}{5}$ of $£ 150$

$$
\frac{1}{5} \text { of } £ 150=£ 150 \div 5=£ 30
$$

Example 2

Find $\frac{3}{4}$ of 48
(To find $\frac{3}{4}$ of a quantity, start by finding $\frac{1}{4}$)

$$
\begin{aligned}
& \frac{1}{4} \text { of } 48=48 \div 4=12 \\
& \text { so } \frac{3}{4} \text { of } 48=3 \times 12=36
\end{aligned}
$$

For you to try

1) Write each of the following fractions in their simplest form:
a) $\frac{10}{16}$
b) $\frac{15}{20}$
c) $\frac{8}{12}$
d) $\frac{20}{80}$
e) $\frac{7}{21}$
f) $\frac{24}{40}$
2) Calculate each of the following:
a) $\frac{1}{4}$ of 24
b) $\frac{1}{3}$ of 30
c) $\frac{1}{5}$ of 45
d) $\frac{3}{4}$ of 20
e) $\frac{2}{5}$ of 40
f) $\frac{7}{9}$ of 72

6. Percentages

Percentages of Amounts

Non- Calculator Methods

Method 1 Using Equivalent Fractions:

Example

a) Find 50% of 2000 kg

$$
50 \% \text { of } 2000 \mathrm{~kg}=\frac{1}{2} \text { of } 2000 \mathrm{~kg}=2000 \mathrm{~kg} \div 2=1000 \mathrm{~kg}
$$

b) Find 25% of $£ 640$

$$
25 \% \text { of } £ 640=\frac{1}{4} \text { of } £ 640=£ 640 \div 4=£ 160
$$

Method 2 Using 1\%

In this method, first find 1% of the quantity (by dividing by 100), then multiply to give the required value.

Example

Find 9% of 200 g

$$
\begin{aligned}
& 1 \% \text { of } 200 \mathrm{~g}=\frac{1}{100} \text { of } 200 \mathrm{~g}=200 \mathrm{~g} \div 100=2 \mathrm{~g} \\
& \text { so } 9 \% \text { of } 200 \mathrm{~g}=9 \times 2 \mathrm{~g}=18 \mathrm{~g}
\end{aligned}
$$

Method 3 Using 10\%

This method is similar to the one above. First find 10% (by dividing by 10), then multiply to give the required value.

Example

Find 70% of $£ 35$

$$
\begin{aligned}
& 10 \% \text { of } £ 35=\frac{1}{10} \text { of } £ 35=£ 35 \div 10=£ 3.50 \\
& \text { so } 70 \% \text { of } £ 35=7 \times £ 3.50=£ 24.50
\end{aligned}
$$

For you to try (without a calculator)

1) 50% of 200
2) 25% of 80
3) 10% of 40
4) 20% of 60
5) 30% of 500
6) 70% of 90
7) 3% of 600
8) 15% of 360
9) 67% of 300

Calculator Method

To find the percentage of a quantity using a calculator, change the percentage to a fraction, then multiply.

Example

a) Find 23% of $£ 15000$

$$
23 \%=\frac{23}{100} \text { so } 23 \% \text { of } £ 15000=23 \div 100 \times £ 15000=£ 3450
$$

b) Find 68% of $£ 400$

$$
68 \%=\frac{68}{100} \text { so } 68 \% \text { of } £ 400=68 \div 100 \times £ 400=£ 272
$$

Note: We do not use the \% button on a calculator during maths lessons!

For you to try (with a calculator)

1) 24% of 50
2) 79% of 400
3) 18% of 2000
4) 17.5% of 40
5) 47% of 4600
6) 135% of 20

7. Fraction, Decimal \& Percentage Equivalence

Some fractions and percentages are used very frequently. It is useful to be able to express these as either a fraction, decimal or percentage.

Fraction	Decimal	Percentage
1	1	100%
$\frac{1}{2}$	0.5	50%
$\frac{1}{3}$	$0.33 \ldots .$.	33%
$\frac{1}{4}$	0.25	25%
$\frac{3}{4}$	0.75	75%
$\frac{1}{10}$	0.1	10%
$\frac{2}{10}\left(=\frac{1}{5}\right)$	0.2	20%
$\frac{3}{10}$	0.3	30%

For you to try

1) Change into decimals:
a) 40%
b) 85%
c) $\frac{7}{10}$
2) Change into percentages:
a) 0.8
b) $\frac{5}{10}$
c) $\frac{4}{5}$
3) Change into fractions:
a) 90%
b) 0.6
c) 0.4

8. Ratio \& Proportion

Writing a Ratio

Ratio is used to make a comparison between two things.

Example

In this pattern we can see that there are 3 happy faces to every sad face.
We use the symbol : to represent to in the above statement, therefore we write the ratio like this:

The ratio of happy faces to sad faces is $3: 1$

The ratio of sad faces to happy faces is $1: 3$

Note: The order of the numbers is important.

Ratio is used in a number of situations including

- In a cooking recipe
- When mixing concrete or paint
- In the scale on maps or in models e.g. if a scale of $1: 100000$ is used on a map, it means that 1 cm on the map represents 100000 cm in reality.

Simplifying Ratios

Ratios can be simplified in much the same way as fractions, by dividing each part of the ratio by the same number

Example 1

Purple paint can be made by mixing 10 tins of blue paint with 6 tins of red.

The ratio of blue to red can be written as $10: 6$

It can also be written as $5: 3$, as it is possible to split up the tins into 2 groups, each containing 5 tins of blue and 3 tins of red.

We have simplified the ratio $10: 6$ by dividing both numbers by two to get $5: 3$

Example 2

Simplify each ratio:
(a) $4: 6$
(b) $24: 36$
(c) $6: 3: 12$
(a) 4:6 (Divide by 2)
(b) 24:36 (Divide by 12)
(c) 6:3:12 (Divide by 3)
$=2: 3$
$=2: 3$
$=2: 1: 4$

Example 3

Concrete is made by mixing 20 kg of sand with 4 kg cement.

Write the ratio of sand : cement in its simplest form

The ratio of Sand to Cement $=20: 4$

Which can be simplified (by dividing by 4) to $5: 1$

Proportion

Two quantities are said to be in direct proportion if when one doubles the other doubles. We can use proportion to solve problems.

Example 1

A car factory produces 1500 cars in 30 days. How many cars would they produce in 90 days?

Days		Cars
x3		1500
90		4500

The factory would produce 4500 cars in 90 days.

Example 2

5 adult tickets for the cinema cost £27.50. How much would 8 tickets cost?

Tickets	Cost	
5	$£ 27.50$	
1	$£ 5.50$	$(27.50 \div 5)$
8	$£ 44.00$	(5.50×8)

The cost of 8 tickets is $£ 44$

For you to try

1) Simplify the following ratios as much as possible:
a) $15: 12$
b) $20: 30$
c) $36: 27$
d) $28: 35: 14$
2) If 3 pens cost 75 p, how much would 7 identical pens cost?
3) In a class of 30 pupils there are 18 boys. Write as a ratio in its simplest form the number of boys to the number of girls.

9. Negative Numbers

The negative sign (-) tells us the number is below zero e.g. -4. The number line is useful when working with negative numbers. Below is a part of the number line.

			Negative direction					\leftarrow	\rightarrow		Positive direction				
-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6

The numbers on the right are greater than the numbers on the left e.g. 5 is greater than 2 and 2 is greater than -3 .

Note that -3 is greater than -8.

Adding and subtracting with directed numbers

Example: - $3+7$

```
        Start
    -4
```

 \(\left\lvert\, \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \quad \begin{gathered}\text { Start at }-3 . \\ \text { Move } 7 \text { in the positive direction } \\ \text { Answer:4 }\end{gathered}\right.\)
 Example 2: $-4-2+7$

```
    Start
-7 -6 -6 -5 -4 -3 -3 -2 - -1 0
```

 \(\leftarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \quad \begin{gathered}\text { Start at -4. } \\ \leftarrow \rightarrow \rightarrow \text { direction }\end{gathered}\)

Multiplying and dividing negative numbers

We multiply and divide negative numbers in the usual way whilst remembering these very important rules:

Two signs the same, a positive answer.
Two different signs, a negative answer.

Note: If there is no sign before the number, it is positive.

Examples:

5×-7	$=-35$
-4×-8	$=32 \quad$ (different signs give a negative answer)
$48 \div-6$	$=-8$
$-120 \div-10$	$=12 \quad$ (two signs the same give a positive answer)
-1 (two signs the same give a positive answer)	

For you to try

1) $-8+12$
2) $-5-4$
3) $12-20$
4) $-15+9$
5) $-4+9-13$
6) -5×6
7) $-4 x-8$
8) $-30 \div 6$
9) $-63 \div-7$

10. Coordinates

Co ordinates of maps (global), and OS maps (grid references)

We use coordinates to describe location. We write a coordinate as two numbers in a bracket separated by a comma. The first number is the x-coordinate (across) and the second number is the y-coordinate (up or down).

Example

The coordinates of the points are:
$\boldsymbol{A}=(1,2)(1$ across, 2 up)
$B=(-2,3)$
$C=(-2,-2)$
$D=(3,-2)$

Note: There is a special name for the point $(0,0)$. It is called the origin.

For you to try

Plot each of the following points on the coordinate grid above:

1) $E=(3,3)$
2) $F=(1,-2)$
3) $G=(-2,1)$
4) $H=(-3,0)$
5) $I=(2,3)$
6) $J=(-1,-3)$

11. Inequalities

We us the = sign to show that two sums are equal. If one sum is greater than or less than the other we use inequalities:

$<$ less than	$>$ greater than
\leq less than or equal to	\geq greater than or equal to

Examples:

$$
5<8 \quad 43>6 \quad-3>-10
$$

For you to try

Put the correct symbol, either < or > in between each of the following pairs of numbers:

1) 35
2) 65
28
3) -5
-12
4) $8 \quad-4$
5) -7
-10
6) -4.5
-3

12. Names of two dimensional shapes

A polygon is a closed shape made up of straight lines.
A regular polygon has all of its sides equal in length and all of its angles equal in size.

Note: All 2D shapes with 4 sides are known as quadrilaterals

13. 3D shapes

3D means three dimensions - 3D shapes have length, width and height.

| Nhape | Faces | Edges | Vertices
 (corners) |
| :--- | :---: | :---: | :---: | :---: |

14. Perimeter

Perimeter is the distance around the outside of a shape. We measure the perimeter in millimetres (mm), centimetres (cm), metres (m), etc.

This shape has been drawn on a 1 cm grid. Starting on the orange circle and moving in a clockwise direction, the distance travelled is . . .
$1+1+1+1+1+1+1+1+1+2+1+2=14 \mathrm{~cm}$
Perimeter $=14 \mathrm{~cm}$

If you know the length of the sides of a shape then to find the perimeter you simply add the lengths together.

Example

12 cm

In the rectangle on the right the perimeter $=$

$$
12+12+5+5=34 \mathrm{~cm}
$$

5 cm

Note: we added the 12 cm twice as the bottom edge is equal in size to the top and similarly we added the 5 cm twice as the left and right edges are equal.

Example 2

In the triangle on the left the perimeter $=$

$$
8+8+4=20 \mathrm{~cm}
$$

15. Area of 2D Shapes

The area of a shape is how much surface it covers. We measure area in square units e.g. centimetres squared $\left(\mathrm{cm}^{2}\right)$ or metres squared $\left(\mathrm{m}^{2}\right)$.

Areas of irregular shapes

Given an irregular shape, we estimate its area through drawing a grid and counting the squares that cover the shape.

Whole square -
count as one.

Half a square or more count as one.

Less than half a square ignore.

Area $=11 \mathrm{~cm}^{2}$.

Note: This answer is approximate and not the exact answer.

Area formulae

Rectangle

Multiply the length with the width.

$$
\text { Area }=1 \times w
$$

Trapezium

Add the parallel sides, multiply with the height and divide by two.

$$
\text { Area }=\frac{(a+b) h}{2}
$$

Circle

Multiply the radius with itself, then multiply with π.

$$
\text { Area }=r \times r \times \pi=\pi r^{2}
$$

Triangle

Multiply the base with the height and divide by two.

$$
\text { Area }=\frac{b \times h}{2}
$$

Parallelogram

Multiply the base with the height.

$$
\text { Area }=b \times h
$$

16. Volume

Volume is the amount of space that an object contains or takes up. The object can be a solid, liquid or gas.

Volume is measured in cubic units e.g. cubic centimetres $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$.

This cube has a volume of $1 \mathrm{~cm}^{3}$

Cuboid

Note that a cuboid has six rectangular faces.

Volume of a cuboid $=$ length \times width \times height

Prism

A prism is a 3-dimensional object that has the same shape throughout its length i.e. it has a uniform cross-section.

Volume of a prism $=$ area of cross-section \times length

17. Units of Measurement

Metric (new) units of length

Millimetre	$M m$	$10 \mathrm{~mm}=1 \mathrm{~cm}$
Centimetre	Cm	$100 \mathrm{~cm}=1 \mathrm{~m}$
Metre	M	$1000 \mathrm{~m}=1 \mathrm{~km}$
Kilometre	Km	

Imperial (old) units of length
Inch
in or " $12 \mathrm{in}=1 \mathrm{ft}$

Foot
ftor ' $\quad 3 \mathrm{ft}=1 \mathrm{yd}$
Yard
yd
$1760 \mathrm{yd}=1$ mile
Mile

Metric units of mass

Metric units of volume

Millilitre	MI	$1000 \mathrm{ml}=11$
Litre	L	

Imperial units of volume
Pint
Pt $\quad 8 \mathrm{pt}=1 \mathrm{gal}$
Gallon
Gal

Converting between imperial and metric units

Length

1 inch	$\approx 2.5 \mathrm{~cm}$
1 foot	$\approx 30 \mathrm{~cm}$
1 mile	$\approx 1.6 \mathrm{~km}$
5 miles	$\approx 8 \mathrm{~km}$

Weight/Mass

1 pound	$\sim 454 \mathrm{~g}$
2.2 pounds	$\sim 1 \mathrm{~kg}$

Volume

1 gallon	≈ 4.5 litre
1 pint	≈ 0.6 litre $(568 \mathrm{ml})$
$1 \frac{3}{4}$ pints	≈ 1 litre

For you to try

1) Change into centimetres:
a) 40 mm
b) 230 mm
c) 1.2 m
2) Change into metres:
a) 300 cm
b) 1.5 km
c) 70 cm
3) Change into grams:
a) 2 kg
b) $5 \frac{1}{2} \mathrm{~kg}$
c) 0.3 kg
4) Change into miles:
a) 16 km
b) 80 km
c) 32 km

18. Time

The Yearly Cycle

The 24 hour and 12 hour clock

	24 hour	12 hour	
Midnight	00:00	12.00 a.m.	Midnight
The 24 hour clock always uses 4 digits to show the time.	01:00	1:00 a.m.	The 12 hour clock shows the time with a.m. before midday and p.m. after mid-day.
	02:00	2:00 a.m.	
	03:00	3:00 a.m.	
	04:00	4.00 a.m.	
	05:00	5:00 a.m.	
	06:00	6:00 a.m.	
The 24 hour system does not use a.m. nor p.m.	07:00	7:00 a.m.	
	08:00	8:00 a.m.	
	09:00	9:00 a.m.	
	10:00	10:00 a.m.	
	11:00	11:00 a.m.	
Mid-day	12:00	12:00 p.m.	Mid-day
	13:00	1:00 p.m.	
	14:00	2:00 p.m.	
	15:00	3:00 p.m.	1--ッ-
	16:00	4:00 p.m.	6il 12
	17:00	5:00 p.m.	10 0^{10}
	18:00	6:00 p.m.	$0<3$
	19:00	7:00 p.m.	8 myma 4
	20:00	8:00 p.m.	765
	21:00	9.00 p.m.	-
	22:00	10.00 p.m.	
	23:00	11:00 p.m.	

Time vocabulary

02:10	Ten past two in the morning	2:10 a.m.
07:15	Quarter past seven in the morning	7:15 a.m.
15:20	Twenty past three in the afternoon	$3: 20$ p.m.
21:30	Half past nine in the evening	9:30 p.m.
14:40	Twenty to three in the afternoon	$2: 40$ p.m.
21:45	Quarter to ten at night	9:45 p.m.

19. Bearings

A bearing describes direction. A compass is used to find and follow a bearing.

The diagram below shows the main compass points and their bearings.

The bearing is an angle measured clockwise from the North.

Bearings are always written using three figures. e.g. if the angle from the North is 5°, we write 005°.

20. Displaying Data

Collecting and recording

We can record data in a list
e.g. here are the numbers of pets owned by pupils in form 9C:
$1,2,1,1,2,3,2,1,2,1,1,2,4,2,1,5,2,3,1,1,4,10,3,2,5,1$
A frequency table (or tally chart) is more structured and helps with processing the information.

Number of pets	Tally	Frequency
1	HI HI	10
2	HI III	8
3	III	3
4	II	2
5	II	2
6		0
7		0
8		0
9		0
10	I	1

Displaying

In order to communicate information, we use statistical diagrams. Some of the ones we use are:

- Pictogram
- Bar Chart
- Pie Chart
- Line Graph
- Conversion Graph
- Scatter diagram

Pictogram

A pictogram uses symbols to represent frequency. We include a key to show the value of each symbol.

Example

The diagram below shows the number of pets owned by pupils in $9 C$.

Represents two pupils.

We can see that there are 10 pupils that have 1 pet (5 pictures each worth 2).
There are 8 pupils that have 2 pets.
There are 3 pupils that have 3 pets (The $\frac{1}{2}$ picture is worth 1 pupil).
There are 2 pupils that have 4 pets.
There are 2 pupils that have 5 pets.
There is 1 pupil that has more than 5 pets.

Bar chart

The height of each bar represents the frequency.
All bars must be the same width and there must be gaps between the bars, also of an equal size.

The scale of the frequency starts from 0 every time and the numbers go next to the lines, not the spaces.

Pets owned by pupils of 7J

Number of animals

Pie chart

The complete circle represents the total frequency. The angles for each sector are calculated as follows:

Here is the data for the types of pets owned by 9C

Type of pet	Frequency	Angle of the sector	
Cats	13	$13 \times 10^{\circ}=130^{\circ}$	
Dogs	11	$11 \times 10^{\circ}=110^{\circ}$	
Birds	5	$5 \times 10^{\circ}=50^{\circ}$	
Fish	7	$7 \times 10^{\circ}=70^{\circ}$	
Total	36		360°

Divide 360° by the total of the frequency: $360^{\circ} \div 36=10^{\circ}$ Therefore 10° represents one animal

Remember to check that the angles of the sectors add up to 360°.

Types of pet owned by 7J

Line graph

The temperature of water was measured every minute as it was heated and left to cool. A cross shows the temperature of the water at a specific time. Through connecting the crosses with a curve we see the relationship between temperature and time.

The line enables us to estimate the temperature of the water at times other than those plotted e.g. at $6 \frac{1}{2}$ minutes the temperature was approximately $40^{\circ} \mathrm{C}$.

Conversion graph

We use a conversion graph for two variables which have a linear relationship. We draw it in the same way as the above graph but the points are connected with a straight line.

From the graph, we see that 8 km is approximately 5 miles.

Scatter diagram

We plot points on the scatter diagram in the same way as for the line graph. We do not join the points but look for a correlation between the two sets of data.

Positive correlation

No correlation

Negative correlation

If there is a correlation, we can draw a line of best fit on the diagram and use it to estimate the value of one variable given the other.

The following scatter graph shows a positive correlation between the weights and heights of 12 pupils.

The line of best fit estimates the relationship between the two variables.
Notice that the line follows the trend of the points.
There are approximately the same number of points above and below the line.
We estimate that a pupil 155 cm tall has a weight of 60 kg .

21. Averages \& Spread

Averages

The average is a measure of the middle of a set of data. We use the following types of average:

Mean - We add the values in a set of data, and then divide by the number of values in the set.

Median - Place the data in order starting with the smallest then find the number in the middle. This is the median.

If you have two middle numbers then find the number that's halfway between the two.

Mode - This is the value or values that appear most often.

Spread

The spread is a measure of how close together the items of data are. We use the range to measure spread:

Range - The range of a set of data is the difference between the highest and the lowest value.

Find the mean, median, mode and range of the following set of numbers:

	$4,3,2,0,1,3,1,1,4,5$	
Mean	$\frac{4+3+2+0+1+3+1+1+4+5}{10}$	$=2 \cdot 4$
Median	$0,1,1,1,2,3,3,4,4,5 \frac{2+3}{2}$	$=2 \cdot 5$
Mode	$0,1,1,1,2,3,3,4,4,5$	$=1$
Range	$0,1,1,1,2,3,3,4,4,5$	$5-0$

For you to try

Find the mean, median, mode and range of the following set of numbers:

1) $8,11,6,8,2,15,20$
2) $6,7,8,10,3,12,15,8,6,5$

Mathematical Dictionary (Key words):

Add; Addition $(+)$	To combine 2 or more numbers to get one number (called the sum or the total) Example: $12+76=88$
a.m.	(ante meridiem) Any time in the morning (between midnight and 12 noon).
Approximate	An estimated answer, often obtained by rounding to neares \dagger 10,100 or decimal place.
Calculate	Find the answer to a problem. It doesn't mean that you must use a calculator!
Data	A collection of information (may include facts, numbers or measurements).
Denominator	The bottom number in a fraction (the number of parts into which the whole is split).
Difference (-)	The amount between two numbers (subtraction). Example: The difference between 50 and 36 is 14 $50-36=14$
Division (\div)	Sharing a number into equal parts. $24 \div 6=4$
Double	Multiply by 2.
Equals (=)	Makes or has the same amount as.
Equivalent fractions	Fractions which have the same value. Example $\frac{6}{12}$ and $\frac{1}{2}$ are equivalent fractions
Estimate	To make an approximate or rough answer, often by rounding.
Evaluate	To work out the answer.
Even	A number that is divisible by 2 . Even numbers end with $0,2,4,6$ or 8 .
Factor	A number which divides exactly into another number, leaving no remainder. Example: The factors of 15 are $1,3,5,15$.
Frequency	How often something happens. In a set of data, the number of times a number or category occurs.
Greater than (>)	Is bigger or more than. Example: 10 is greater than 6. $10>6$
Least	The lowest number in a group (minimum).
Less than (<)	Is smaller or lower than. Example: 15 is less than 21. $15<21$.
Maximum	The largest or highest number in a group.
Mean	The arithmetic average of a set of numbers (see p46)

Median	Another type of average - the middle number of an ordered set of data (see p46)
Minimum	The smallest or lowest number in a group.
Minus (-)	To subtract.
Mode	Another type of average - the most frequent number or category (see p46)
Most	The largest or highest number in a group (maximum).
Multiple	A number which can be divided by a particular number, leaving no remainder. Example Some of the multiples of 4 are $8,16,48,72$
Multiply (x)	To combine an amount a particular number of times. Example $6 \times 4=24$
Negative Number	A number less than zero. Shown by a minus sign. Example -5 is a negative number.
Numerator	The top number in a fraction.
Odd Number	A number which is not divisible by 2 . Odd numbers end in $1,3,5,7$ or 9 .
Operations	The four basic operations are addition, subtraction, multiplication and division.
Order of operations	The order in which operations should be done remembered with the acronym BIDMAS.
Place value	The value of a digit dependent on its place in the number. Example: in the number 1573.4, the 5 has a value of 500.
p.m.	(post meridiem) Any time in the afternoon or evening (between 12 noon and midnight).
Prime Number	A number that has exactly 2 factors (can only be divided by itself and 1). Note that 1 is not a prime number as it only has 1 factor.
Product	The answer when two numbers are multiplied together. Example: The product of 5 and 4 is 20.
Remainder	The amount left over when dividing a number.
Share	To divide into equal groups.
Sum	The total of a group of numbers (found by adding).
Total	The sum of a group of numbers (found by adding).

Answers

Page 6

1) 77
2) 85
3) 514
4) 21
5) 16
6) 45
7) 138
8) 472
9) 476
a) $7,11,25,285$
b) $18,30,36,100,3498$
c) $25,36,100$

Page 12

Page 7

a) $12,24,30$
b) $3,5,15,30$

1) 625
2) 715
3) 1232
4) 8620
5) 7873
6) 5219
7) 508
8) 183
9) 773
10) 465
10)3863
11) 4584

Page 8

1) 700
2) 70
3) 7000
4) 0.7 or $7 / 10$
5) 0.07 or $7 / 100$
6) 7000000
7) 106.5
8) 62.08
9) 74.36
10) 85.26
11) 686.9
12) 681.57
13) 19.6
14) 61.45
15) 469.42
10)39.33
16) 171.7
17) 246.7

Page 9

1) 2232
2) 3854
3) 780
4) 1841
5) 34472
6) 36612

Page 17

1) a) $5 / 8$
b) $3 / 4$
c) $2 / 3$
d) $1 / 4$
e) $1 / 3$
f) $3 / 5$
2) a) 6
b) 10
c) 9
d) 15
e) 16
f) 56

Page 19

Page 10

1) 186
2) 156
3) 38
4) 259
5) 1507
6) 467
7) 100
8) 20
9) 4
10) 12
11) 150
12) 63
13) 18
14) 54
15) 201

Page 20

Page 11

1) 12
2) 316
3) 360
4) 7
5) 2162
6) 27

Page 21

1) a) 0.4
b) 0.85
c) 0.7
2) a) 80%
b) 50%
c) 80%
3) a) $9 / 10$
b) $6 / 10$ or $3 / 5$
c) $4 / 10$ or $2 / 5$

Page 24

1) a) $5: 4$
b) $2: 3$
c) $4: 3$
d) $4: 5: 2$
2) $£ 1.75$
3) $3: 2$

Page 26

1) 4
2) -9
3) -8
4) -6
5) -8
6) -30
7) 32
8) -5
9) 9

Page 27

How you can help your child at home
*. It is most important that you talk \& listen to your child about their work in maths. It will help your child if they have to explain to you.

* Share the maths activity with your child and discuss it with them.
* Be positive about maths, even if you don't feel confident about it yourself.
* Remember, you are not expected to teach your child maths, but please share, talk and listen to your child.
* If your child cannot do their homework do let the teacher know by either writing a note in your child's book or telling the teacher.
* A lot of maths can be done using everyday situations and will not need pencil and paper methods.
* Play games and have fun with maths!

Here are some examples of how you can include mathematics at home:

Shopping \& Money

£ Looking at prices
£ Calculating change - which coins, different combinations.
£ Counting pocket money.
£ Reading labels on bottles, packets, in order to discuss capacity, weight, shape and colour.
$£$ Estimating the final bill at the end of shopping while waiting at the checkout.

